Strong Solutions and Global Attractors for Kirchhoff Type Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations ...

متن کامل

Global Existence and Decay Estimates for Nonlinear Kirchhoff–type Equation with Boundary Dissipation

In this paper, we consider the initial-boundary value problem for nonlinear Kirchhofftype equation utt −φ(‖∇u‖2)Δu−aΔut = b|u|β−2u, where a,b > 0 and β > 2 are constants, φ is a C1 -function such that φ(s) λ0 > 0 for all s 0 . Under suitable conditions on the initial data, we show the existence and uniqueness of global solution by means of the Galerkin method and the uniform decay rate of the e...

متن کامل

The Local Strong Solutions and Global Weak Solutions for a Nonlinear Equation

and Applied Analysis 3 Proof. SettingK 1 = u−∂ 2 xx u andK = (m−∂2 xx ) −1 u and using the first equation of the problem (5), we obtain u = my − y xx and

متن کامل

Global Mild Solutions and Attractors for Stochastic Viscous Cahn-Hilliard Equation

and Applied Analysis 3 2. Preliminaries and Main Results In this section, we first make some preliminary works, then we state explicitly our main results. 2.1. Functional Spaces Let ·, · and | · | denote respectively the inner product and norm ofH L2 G . We define the linear operator A −Δ with domain D A H2 G ⋂H1 0 G . A is positive and selfadjoint. By spectral theory, we can define the powers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2018

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2018/9349625